\C JOY INTERNET RADIO.

SOMETHING FOR EVERYONE.
Welcome To C Joy Magazine.

Late June Edition, 2019.


Edited by Pastor Darryl Breffe.



Articles with you in mind.



See our ad section in the back of our magazine.

To talk to the editor call (508.957.3530. Press 0 when prompted.

To access our network of stations go to:
http://www.cjoynetworks.org
Click on the appropriate links.


We're! are! here!
Benjamin the chocolate lab, Peanuts the elephant, Jenny the giraffe, Cuty the cat, and MR. Klops the horse.
We did not forget our friends the children.



Cuty the cat here. I have been snooping around and found the return of two email lists. Check out MemoriesOfDaysGoneBy+subscribe@groups.io. Do you remember when? Do you remember your schooldays? How about your days at summer camp?
And another list. You can learn about the inside of your computer.
HelpNeededList+subscribe@groups.io

"Hello, MR. Klops the horse here, I have exciting news for our children. We have a radio station just for children. Twenty-four hours a day, you can listen to programs just for children. Cartoons, old TV. programs that teach family values. Go to: http://www.cjoynetworks.org and click on c joy 2 and then play."



Do you have health issues? Ask nurse Hooper! Do you have questions about your medications? Ask nurse Hooper! Do you have questions about doctor procedures? Ask nurse Hooper! Learn about germ theories and more! Visit and participate in a one-hour discussion every Saturday evening, 6:00 P.M. Eastern, Over http://www.cjoynetworks.org And click on C Joy 1. You can use our conference line to ask questions. 508.957.3530 and press 1. Normal long-distance charges apply where applicable. Nurse Regina Hooper is a registered nurse, well versed in her profession.



***First article:

Hello, Cuty the cat here and I have my ear to the ground. I found an article of interest. Read Below:

The Berkeley Science Review The mystery of deep earthquakes Arjun Narayanan• Behind the Science• andCrazy Awesome Science20h ago• behind the science• earthquake• seismology subduction1 In the depths of the Earth lurks a mysterious phenomenon: earthquakes are occurring in regions where they should be impossible, and we don’t know what’s causing them. Unlike Professor Lidenbrock, the protagonist of Jules Verne’s classic Journey to the Center of the Earth, we cannot descend down a volcanic shaft to observe the processes that are responsible. Instead, we are left with the task of reproducing a portrait from a shadow. The key to unlocking this mystery lies in the study of deep earthquakes. “What we know about global seismology stems from having global networks. We need data,” says Douglas Dreger, professor of Earth and Planetary Science (EPS) at UC Berkeley. In the 1960s, during the peak of the Cold War, the United States pioneered the development of the Worldwide Standardized Seismograph Network (WWSSN), primarily to monitor nuclear testing. A consequence of this network was the sudden availability of high quality data of natural seismicity. By studying the depth of earthquakes measured by the WWSSN, seismologists realized that, in some regions of the world, earthquakes were mapping out the trajectory of the crust sinking into the Earth. They had just discovered evidence for the process of subduction which, along with seafloor spreading, is an important component of the theory of plate tectonics. Today, an earthquake of even modest intensity is picked up by hundreds, if not thousands, of seismographs around the world. Seismologists infer a great deal of information from these measurements, including the depth, energy, orientation, and geometric properties (size and shape) of the ruptures that produced the earthquakes. One way of determining the depth of the earthquake focus (the point of origin) is to identify two paths that a pressure wave might take to reach a seismogram: a direct path (P), and a path that involves a reflection from the outer surface of the Earth (pP). “You measure the time difference between P and pP. If you know something about the velocity of the waves, you can compute depth,” says Dreger. P waves travel downward as they leave the focus. pP waves travel upwards as they leave the focus and reflect off the surface of the Earth. Seismologists measure the time at which the P wave and the pP wave reach a measuring station. The difference in this time can be used to calculate the depth of the source. For a long time, seismologists believed that all earthquakes had a depth less than 60 kilometers from the surface. This belief was based on our understanding of how materials fail at high pressures. “Sixty to 100 kilometers corresponds to about three or four gigapascal [pressure],” says Raymond Jeanloz, a professor in EPS at UC Berkeley. That is about 30,000 to 40,000 times atmospheric pressure. “That pressure of three or four gigapascal is experimentally well established as being the ballpark at which rocks go from being brittle to ductile.” Brittle rocks fail by sudden and explosive fracturing. Ductile rocks fail by slow and large deformations. “[Pressure] makes a rock want to smush like play-doh rather than crack like a rock would when you hit it with a hammer,” explains Thomas Smart, a graduate student at EPS who works with Jeanloz to conduct high-pressure experiments on minerals. Temperature also increases as we go deeper into the Earth, which makes rocks even more ductile. This relationship between pressure, temperature, and ductility has been known for well over a century now. However, ever since Japanese seismologist Kiyoo Wadati made some of the earliest measurements of earthquake depth in the 1920s, scientists have been baffled by the regular occurrence of earthquakes well beyond the previously established theoretical limit of 60 kilometers. While the vast majority of earthquakes have a depth less than 60 kilometers, there are relatively frequent earthquakes in the 100 to 300 kilometer range and the 500 to 700 kilometer range. The magnitude 4.2 earthquake in 2004 near Vanuatu (about 3,000 kilometers north of New Zealand) was measured to a depth of 735 kilometers, and is the deepest earthquake on record. “[At these depths], the sorts of mechanisms that we invoke for shallow earthquakes just don’t work,” says Dreger. “Why we have deep earthquakes is still an open and fundamental question.” What are deep earthquakes? Modern geophysicists agree upon the following classification system. An earthquake is considered to have a: • Shallow focus if the focus is at a depth less than 60 kilometers. • Intermediate focus if the focus is at a depth greater than 60 kilometers but less than 300 kilometers. • Deep focus if the focus is at a depth greater than 300 kilometers. The term “deep earthquake” is used loosely to refer to intermediate-focus and deep-focus earthquakes. Going by this classification, approximately one in four measurable earthquakes can be classified as a deep earthquake. This might seem like a small number, but if you consider the fact that we have no convincing explanation for this phenomenon, it is certainly a significant number. Dataset includes almost 50,000 earthquakes recorded between 1976-2017 available in the Harvard Centroid Moment Tensor Catalog Some deep earthquakes can be extremely powerful. In 1994, a magnitude 8.2 earthquake shook Bolivia from a depth of 630 kilometers. The 2013 magnitude 8.3 earthquake in the Sea of Okhotsk had a depth of about 600 kilometers and is the most powerful deep-focus earthquake on record. The depth of these earthquakes is approximately the same as the distance between San Francisco and Los Angeles. If there is a magnitude seven shallow focus earthquake in Los Angeles, would we feel it here? “We wouldn’t feel it here in McCone Hall,” says Dreger, referring to the home of EPS, “and that’s just because the further you are from an earthquake, the more spread out the energy becomes.” A deep-focus earthquake that is right below your feet is actually quite far away. But because the interior of the Earth is more efficient at transmitting seismic waves than the surface of the Earth, a powerful deep earthquake can be felt over a large region of the world. Residents in high-rise buildings in San Francisco and Toronto were able to feel the 1994 Bolivia earthquake. Deep earthquakes share certain common features that have given seismologists important clues as to what might be causing them. For starters, they occur almost exclusively in subduction zones, where one tectonic plate is forced under another tectonic plate and is dragged into the mantle. In fact, approximately two out of three deep focus earthquakes (i.e. those at a greater than 300-kilometer depth) occur in one particular subduction zone: the Tonga-Kermadec subduction zone, near the northern tip of New Zealand. The fact that deep earthquakes only occur in subduction zones is part of why they are rare. The Kermadec islands are located on the Tonga-Kermadec subduction zone which harbors the majority of deep focus earthquakes in the Earth. Fig (a) from mapswire.com, Fig (b) from Wikimedia Commons. Not only do deep earthquakes occur in subduction zones, but they also seem to orient themselves along the direction of subduction. When a material is under stress, it is always possible to choose an orientation that describes the stress purely in terms of tension and compression. In the picture below, if we look along the sides of the orange rectangle, we would describe the state of stress as a shearing. However, if we looked along the diagonals, we would describe the state of stress as a tension or compression. The diagonals are called the principal axes of the state of stress. The principal axes describe the natural orientation of the stress, and might give us clues about the processes generating them. It is always possible to describe a state of stress as a combination of tension and compression. Intermediate-focus earthquakes between 100–300 kilometers are characterized by tensile stress along the direction of subduction. Deep-focus earthquakes at 600 kilometers are characterized by compressive stress along the direction of subduction. “It’s almost as though, in the intermediate regime, the weight of the slab below is pulling on the slab [causing tension],” says Jeanloz, “farther below, at 600 kilometers, it’s as though the slab is hitting something stiff [causing compression].” Renowned UC Berkeley seismologist Perry Byerly was instrumental in developing many of these ideas. Intermediate and deep focus earthquakes orient themselves along the dip of the slab. Intermediate focus earthquakes are characterized by tension. Deep focus earthquakes are characterized by compression. The processes behind intermediate and deep focus earthquakes release more energy compared to their shallow counterparts. Seismologists quantify this by a term known as “stress drop”. This is a measure of the difference in the stress across a fault before and after an earthquake. “Very deep earthquakes definitely have higher stress drops [and are] more energetic,” notes Dreger. Large amounts of energy release and efficient transmission of this energy through the mantle means deep earthquakes are an excellent source of information about the internal structure of the Earth. Seismologists can use this information to essentially “image” large regions of the mantle just like a CT scan. This process is known as seismic tomography. “The earthquakes provide a source of illumination,” says Jeanloz. It’s like a flash bulb going off 600 kilometers inside the Earth, which is then used by seismologists to develop a picture of the interior. Studies of this data by seismologists like Barbara Romanowicz, professor in EPS at UC Berkeley, have revealed complex structures such as mantle plumes which are reminiscent of the patterns in a lava lamp. What might be causing deep earthquakes? The Earth’s mantle is a high-pressure and high-temperature environment. Geological minerals that are subducted to these depths undergo many transformations along the way. There is broad consensus among scientists that deep earthquakes are a consequence of these transformations. We will look at dehydration embrittlement and phase transitions as two particular examples of high-pressure transformations. Dehydration embrittlement Prior to 2009, Oklahoma was seismically relatively quiet. There were maybe one or two earthquakes in a year with magnitude greater than three. In 2015, there were more than 900 magnitude 3+ earthquakes in the state. The culprit for this dramatic increase in seismicity was wastewater injection into the Earth. While these earthquakes were not deep earthquakes, they are an excellent illustration of how the addition of water into tiny pores in rocks can weaken them and make them more prone to brittle fracture. Pressure increases frictional force between two surfaces. It is more difficult to slide a heavy box, which exerts greater pressure, or force per area, on the floor compared to a light box. In a similar fashion, pressure applied on a material prevents it from fracturing. “Any fracture plane has large normal forces on it that the motion on the plane is suppressed,” explains Jeanloz. If we inject a fluid into this material, however, it exerts a force that opposes the externally applied pressure. This reduces the effectiveness of the external pressure in preventing rupture from taking place. This process is called dehydration embrittlement. External pressure increases friction between particles preventing them from slipping. The fluid pressure, called “pore pressure”, opposes the external pressure. This reduces friction between particles, allowing slip planes or fracture planes to form. Mineral physicists believe that such a process is responsible for intermediate-depth earthquakes. The water in this case comes from the minerals in the rock. At sufficiently high pressure, this water is released. “At 100 kilometer [depth] it is widely thought that these earthquakes are due to dehydration of serpentine”, says Smart. Serpentine is a family of minerals that includes asbestos. These minerals are formed when subducting slabs combine with water from the ocean and are heated up. The mineral incorporates the water into its crystal structure. At a pressure corresponding to about 100 kilometers in depth, this water is released by the mineral into the pore spaces of the surrounding rock. In the 90s, the Jeanloz group was among the first to measure acoustic emissions, which are basically miniature earthquakes, during high-pressure experiments on serpentine. They attributed these acoustic emissions to dehydration embrittlement. Intermediate earthquakes occur in the exact depth range in which dehydration of serpentine is expected to take place. “Intermediate earthquakes are not as big of a conundrum”, says Smart, “deep focus earthquakes are a little bit more weird.” Solid-state phase transitions It is difficult to imagine a process that carries water to 600 kilometers and beyond, where the deepest earthquakes occur. This makes dehydration embrittlement less plausible as an explanation for these earthquakes. However, there are other changes within the Earth that may be responsible. “Starting around 300 – 400 kilometer depth, the bulk of the minerals in the mantle undergo phase transition,” says Jeanloz. When a mineral undergoes a phase transition, it maintains its chemical composition, but changes the arrangement of its atoms resulting in different physical properties. Coal and diamond are both composed of carbon atoms, yet display remarkably different properties because the arrangement of the carbon atoms is different. “Our best understanding of deep earthquakes is that it is somehow tied to the range of stability of olivine and where it undergoes transition to spinel,” says Dreger. Olivine, a magnesium and iron silicate, is one of the most abundant minerals in the Earth’s crust and upper mantle. At high pressures, olivine transforms into a spinel structure that is slightly more dense and occupies less volume. The range of stability of olivine and spinel depends on temperature and pressure. Spinel is the stable phase at high pressure. Olivine is stable at low pressure. The exact pressure at which olivine transforms to spinel depends on the temperature. As olivine transforms into spinel, it shrinks in volume. This shrinking action generates stress in the mineral at the interface between olivine and spinel. The mechanics of this transformation could be behind the deepest earthquakes on the planet. But this explanation is far from satisfactory. “A lot of people don’t like phase transformation as an explanation for deep focus earthquakes despite the profound coincidence that deep focus earthquakes happen right where these materials are transforming,” says Smart. Critics argue that if a change in volume is causing seismicity, then the resultant earthquake must be similar to an implosion caused by the collapse of rocks. “You’d expect to see an implosion,” says Smart, “but we don’t. We see two rocks sliding past each other.” If this phase transition is responsible, we might expect to be able to produce miniature earthquakes in the lab at these pressures. “In my experiments we don’t see any acoustic emissions from olivine going through that transition,” says Smart. There are other hypotheses, but none are without criticism. “It’s really about how materials fail, in the most general sense,” says Jeanloz, “My hope is that if there is advancement on this very specialized topic of high-pressure failure, it might help inform low-pressure failure too, where things are much less controlled and there is a lot more going on. While seismologists have some theories to explain the mystery of deep earthquakes, they are still a long way from fully understanding this puzzling phenomenon. Currently, much work is being done to better measure and study deep earthquakes and laboratory earthquakes. For example, new, more accurate sensors are being developed in EPS in collaboration with Steven Glaser, professor in Civil and Environmental Engineering at UC Berkeley, which will allow researchers to study these miniature laboratory earthquakes in unprecedented detail. As more advances are made, researchers hope to answer a

End of article.

Mr. Clops the horse here with a story for you our veterans. Don't let this Memorial Day go by without a solute to our service men and women. Here is a story below you will want to remember:

From an Airline Captain (Please don't delete) He writes: My lead flight attendant came to me and said, "We have an H.R. on this flight." (H.R. Stands for human remains.) "Are they military?" I asked. 'Yes', she said. 'Is there an escort?' I asked. 'Yes, I already assigned him a seat'. 'Would you please tell him to come to the flight deck. You can board him early,'I said. A short while later, a young army sergeant entered the flight deck. He was the image of the perfectly dressed soldier. He introduced himself and I asked him about his soldier. The escorts of these fallen soldiers talk about them as if they are still alive and still with us. 'My soldier is on his way back to Virginia ,' he said. He proceeded to answer my questions, but offered no words. I asked him if there was anything I could do for him and he said no. I told him that he had the toughest job in the military and that I appreciated the work that he does for the families of our fallen soldiers. The first officer and I got up out of our seats to shake his hand. He left the flight deck to find his seat. We completed our preflight checks, pushed back and performed an uneventful departure. About 30 minutes into our flight I received a call from the lead flight attendant in the cabin. 'I just found out the family of the soldier we are carrying, is on board', she said. She then proceeded to tell me that the father, mother, wife and 2-year old daughter were escorting their son, husband, and father home. The family was upset because they were unable to see the container that the soldier was in before we left. We were on our way to a major hub at which the family was going to wait four hours for the connecting flight home to Virginia . The father of the soldier told the flight attendant that knowing his son was below him in the cargo compartment and being unable to see him was too much for him and the family to bear. He had asked the flight attendant if there was anything that could be done to allow them to see him upon our arrival. The family wanted to be outside by the cargo door to watch the soldier being taken off the airplane. I could hear the desperation in the flight attendants voice when she asked me if there was anything I could do. 'I'm on it', I said. I told her that I would get back to her. Airborne communication with my company normally occurs in the form of e-mail like messages. I decided to bypass this system and contact my flight dispatcher directly on a Secondary radio. There is a radio operator in the operations control center who connects you to the telephone of the dispatcher. I was in direct contact with the dispatcher. I explained the situation I had on board with the family and what it was the family wanted. He said he understood and that he would get back to me. Two hours went by and I had not heard from the dispatcher. We were going to get busy soon and I needed to know what to tell the family. I sent a text message asking for an update. I saved the return message from the dispatcher and the following is the text: 'Captain, sorry it has taken so long to get back to you. There is policy on this now and I had to check on a few things. Upon your arrival a dedicated escort team will meet the aircraft. The team will escort the family to the ramp and plane side. A van will be used to load the remains with a secondary van for the family. The family will be taken to their departure area and escorted into the terminal where the remains can be seen on the ramp. It is a private area for the family only. When the connecting aircraft arrives, the family will be escorted onto the ramp and plane side to watch the remains being loaded f or the final leg home. Captain, most of us here in flight control are veterans.. Please pass our condolences on to the family. Thanks.' I sent a message back telling flight control thanks for a good job. I printed out the message and gave it to the lead flight attendant to pass on to the father. The lead flight attendant was very thankful and told me, 'You have no idea how much this will mean to them.' Things started getting busy for the descent, approach and landing. After landing, we cleared the runway and taxied to the ramp area. The ramp is huge with 15 gates on either side of the alleyway. It is always a busy area with aircraft maneuvering every which way to enter and exit. When we entered the ramp and checked in with the ramp controller, we were told that all traffic was being held for us. 'There is a team in place to meet the air- craft', we were told. It looked like it was all coming together, then I realized that once we turned the seat belt sign off, everyone would stand up at once and delay the family from getting off the airplane. As we approached our gate, I asked the copilot to tell the ramp controller we were going to stop short of the gate to make an announcement to the passengers. He did that and the ramp controller said, 'Take your time.' I stopped the aircraft and set the parking brake. I pushed the public address button and said, 'Ladies and gentleman, this is your Captain speaking. I have stopped short of our gate to make a special announcement. We have a passenger on board who deserves our honor and respect. His Name is Private XXXXXX, a soldier who recently lost his life. Private XXXXXX is under your feet in the cargo hold. Escorting him today is Army Sergeant XXXXXXX. Also, on board are his father, mother, wife, and daughter. Your entire flight crew is asking for all passengers to remain in their seats to allow the family to exit the aircraft first. Thank you.' We continued the turn to the gate, came to a stop and started our shutdown procedures. A couple of minutes later I opened the cockpit door. I found the two forward flight attendants crying, something you just do not see. I was told that after we came to a stop, every passenger on the aircraft stayed in their seats, waiting for the family to exit the aircraft. When the family got up and gathered their things, a passenger slowly started to clap his hands. Moments later more passengers joined in and soon the entire aircraft was clapping. Words of 'God Bless You', I'm sorry, thank you, be proud, and other kind words were uttered to the family as they made their way down the aisle and out of the airplane. They were escorted down to the ramp to finally be with their loved one. Many of the passengers disembarking thanked me for the announcement I had made. They were just words, I told them, I could say them over and over again, but nothing I say will bring back that brave soldier. I respectfully ask that all of you reflect on this event and the sacrifices that millions of our men and women have made to ensure our freedom and safety in these United States of AMERICA Foot note: I know everyone who has served their country who reads this will have tears in their eyes, including me. Prayer chain for our Military. Don't break it! Please send this on after a short prayer for our service men and women. Don't break it! They die for me and mine and you and yours and deserve our honor and respect. 'Lord, hold our troops in your loving hands. Protect them as they protect us. Bless them and their families for the selfless acts they perform for us in our time of need. Amen' Prayer Request: When you receive this, please stop for a moment and say a prayer for our troops around the world. There is nothing attached. Just send this to people in your address book. Do not let it stop with you. Of all the gifts you could give a Marine, Soldier, Sailor, Airman, & others deployed in harm's way, prayer is the very best one.

End of story.

Last article.
Hello from Jenny the giraffe. I love to play baseball. Bob Branco, one of our friends would like to hear the play-by-play. Read below a letter he recently wrote:

Hi, Everyone,
Below is a copy of a letter that I wrote to Kim Charlson, President of the American Council of the Blind. It is self-explanitory. Please comment. Dear Kim, Several weeks ago, I expressed my concerns about the deterioration of Red Sox radio broadcasts. For reasons which I am completely unaware of, Radio Station WEEI decided to go with a new theme during these broadcasts, one which involves more conversation between the announcers. Quite often, these conversations have nothing to do with baseball, and sometimes the announcers forget to tell us what the pitch is. Last night was a primary example. For two innings during the radio broadcast of the Red Sox game, Joe Castiglione, Will Fleming and Sean McDonough were doing limericks. There have been times where the announcers were talking about septic tanks, fish, groceries from Shaws, name-dropping, other sports, etc. I realize that this is not a blindness issue. After all, many sighted people listen to the radio. However, I don’t know of any organized sighted group willing to fight against this new brand of radio broadcasting. With that said, I find myself turning the radio off and putting on the television where the broadcasts are, for the most part, much better. How ironic, because television is for the sighted. I do a sports podcast once a week with four other people, three of whom have little or no vision. All of us have commented on the unprofessional tone of some of the Red Sox radio broadcasts, hoping that someone would help us address the problem with the proper authorities. I am willing to come to you first on behalf of the blind community, although, as I said before, sighted people listen to the radio, too. I suppose blind people could make the claim that they have to listen to the radio more than the sighted, simply because they can’t watch the games the way sighted people can. I agree with this claim. This is why announcers need to be sensitive and describe the plays with as much detail as possible. They did it before, so why can’t they do it now? Why does WEEI want to make the entire process more lighthearted to the point where it’s okay to miss some of the action in favor of septic tanks, fish, limericks and laughter? One day I had to switch over to the Yankees broadcast so that John Sterling and Susan Walden could restore my sanity as well as my faith in quality radio broadcasting. I hope you, as well as the American Council of the Blind in the New England region, can work with us about restoring quality to Red Sox radio broadcasting. Please get back to me at your convenience, as I know you have a very busy schedule. Warmest regards, Bob Branco

End of letter.



For business professionals...Ministries...Not-For-Profit Organizations.
You can reach hundreds of people, anytime, and from anywhere using Start Meeting Dot Com. Audio presentations. Custom Greetings and more. Go to:
http://www.startmeeting.com
A conference system you can rely on anytime day or night.



• Completely free conference calling

• Always available – 24/7 secure access

easy to use. On-Demand Conferencing

Ready 24/7.

Host calls with up to 1000 participants.

To register go to startmeeting.com . Get instant FREE access!



It's Chewy.com for all your pets' needs. Treats, food, litter, everything you need to make your furry friends feel at home. Visit us at:
Http://WWW.chewy.com
Call us for further information at 1-800-672-4399.



Http://www.ooma.com
Inexpensive phone service for homes and businesses. Excellent rates and superb audio quality. From one-line to multi-line setups. For further information call 1-877-959-6662



Nestles.com Click and refresh. No calory soda, fruit juises, and bottled water. Back to school specials. Call 1-800-759-9257. Stock up today. Nestles will bring your orders to your home or business.



To place an ad in this magazine, the cost is a donation to help reach our goal.



Thank you for reading our magazine. Be sure to pass it around to everyone you know. Continue to pray for one another. And if you have an article(s) to share with others, please submit them by the 20th of the month. Please send your submissions to


cjoyinternetradio@comcast.net

Pastor Darryl Breffe Editor.

End of C Joy Magazine Late June Edition 2019.